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Abstract. This paper resumes light scattering investigations of saltfree aqueous solutions of two compo-
nent mixtures of charged spheres by extending those measurements to systems in which one component
is replaced by essentially stiff rodlike particles. In a second step of investigations these were replaced
by linear flexible particles. Fd-virus particles (length l = 883 nm) or macromolecules of NaPSS of four
different contour lengths have been used as representatives. Mostly the concentration of latex spheres
was fixed at 0.02 Vol%. The concentration of the other component was varied over a wide range. Con-
cerning the scattering intensity, the contribution of the latex spheres dominates, in particular in the
systems containing NaPSS particles. This simplifies the interpretation of data considerably. A rearrange-
ment of the spheres is observed, depending on the shape of the other sort of particles. These conclu-
sions can be drawn from the shift of measured static structure factor SM(q) with concentration c. A
power law is found for the q-value of the maximum. The exponent depends on the properties of the
second component. For the lower molecular weight (MW) samples of NaPSS below a critical concentra-
tion, the exponent is smaller than 1/3, decreasing the more the smaller the MW of the samples is. A
tentative explanation in terms of charge number of NaPSS particles is given. The short time dynam-
ics has been explored too. From the data a “dynamically determined structure factor” can be derived,
that can be compared with the measured static structure factor. Good (fd) and fair (NaPSS) agree-
ment is obtained respectively. Only at small wavenumbers below the maximum of SM(q) deviations
occur which increase with concentration; they are consistent with hydrodynamic interaction.

PACS. 61.25.Hq Macromolecular and polymer solutions; polymer melts; swelling – 78.35.+c Brillouin
and Rayleigh scattering; other light scattering – 83.70.Hq Heterogeneous liquids: suspensions, dispersions,
emulsions, pastes, slurries, foams, block copolymers, etc.

1 Introduction

Much work has been done on two component mixtures
of colloids and polymers immersed in a common solvent
[1–8]. Different organic liquids and also water were
used. Most of the measurements were performed with
probe particles whose diffusive properties were investi-
gated in the presence of a background of stiff chains
or flexible polymers. In the majority the probe par-
ticles were of spherical shape. As light scattering of
spheres dominates usually over that of the background
particles, almost all of measurements were confined to
the properties of the spheres. In some more recent in-
vestigations refractive index matching techniques were
applied in the way that the matrix polymer is isore-
fractive with the solvent. In these cases also weakly
scattering polymers could be used as probe particles
[2,9,10]. Although electrostatic interactions between

a e-mail: Reinhart.Weber@uni-konstanz.de

water soluble particles can become strong, no ordering
phenomena of the probe particles were reported. In all
papers their diffusion constant was extracted by means of
dynamic light scattering (DLS) and related techniques as
a function of ionic strength. The dependence of the sphere
diffusion constant on the matrix particles concentration is
well fitted by a stretched exponential [1]

D

D0
= exp(−αcµ)

(D0 = diffusion constant in the limit of neglectible ma-
trix polymer concentration c). Problems occured in some
of the works. Adsorption of the macromolecules onto the
spheres and bridging of the spherical particles into clusters
have been observed. Such features have also been treated
theoretically [11].

There exist detailed experimental and theoretical stud-
ies of the simplest possible charged two component sys-
tem. Aqueous solutions of charged spherical particles
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of two different diameters and charges, namely latex
spheres. The static structure factor of the mixtures has
been analyzed and the mean square displacement was in-
vestigated. Moreover, the polydispersity of the two com-
ponents was taken into account [7,8].

In this paper we present results on a mixture of latex
spheres in water, with the other component being either
rodlike fd-virus particles (l = 883 nm) or flexible poly-
mer particles of Na(H)PSS. Mostly, the concentration of
the spheres is fixed and therefore their mean distance.
The particle number of the other component is gradu-
ally increased. Because an electrostatic interaction exists
between the different particles, a certain structure is built
up. In most of the cases the scattering of the latex spheres
dominates; thus we will gain information about the mix-
ture’s structure by essentially monitoring the structural
properties of spheres after having added the second sort
of macroparticles. In addition we are interested in the
dynamic properties of the mixture. Especially we have
concentrated on the short time behaviour of the time cor-
relation function, since in the parent systems this is related
to the structure of the particles. Fd-particles are a good
representative of monodisperse rodlike macromolecules.
They are only slightly flexible. There structural and dy-
namical properties are well known [12–14]. As a represen-
tative of a charged, rather flexible polymer NaPSS was
selected. It can be purchased in various molecular weights
and a wealth of information on the solution properties is
available [15–17].

2 Experimental

2.1 Sample preparation

Monodisperse latex spheres of Ø = 67 nm and 91 nm
were purchased by Dow Chemical. Samples of desired
concentration were prepared with highly purified water
(R ≥ 18 MΩ). The solutions were deionized by pump-
ing them with a tube pump [18] through mixed-bed-ion-
exchange-resin (MB3, Serva Diagnostics, Heidelberg).

Fd-virus particles, which scattering power is about an
order of magnitude weaker than that of spheres of diame-
ter Ø = 67 nm at the same number concentration, can be
produced with almost equal length l (l = 883 ± 24 nm).
As already described earlier, a stock solution was prepared
with the help of Professor I. Rasched† (Universität Kon-
stanz) following a method of Marvin and Wachtel [19]. Es-
cheria coli bacteria were infected with the fd-virus. After
8 h at 37 ◦C the fd-virus bred by a factor 1000. The repro-
duction was stopped and the virus was separated from the
bacteria by several steps of precipitation and centrifuga-
tion. Finally, the fd-virus suspension was ultracentrifuged
in a CsCl gradient and dialyzed against deionized water
to obtain a pure stock solution. After dilution the samples
were processed further as above, using a filter of 1.2 nm
pore size in the circuit.

NaPSS is a very weak scatterer compared to latex
spheres (Is,NaPSS (MW 744 kg/mol)/Is,latex67 < 10−2).

The material was purchased by Polysciences Europe. Four
molecular weights were used (Tab. 1).

According to the manufacturer, the polydispersity of
the salt form is characterized by Mw/Mn < 1.1, and the
degree of sulphonation higher than 90%. Again aqueous
solutions of appropriate concentration were deionized by
means of a tube pump before mixing with spheres. As
already has been pointed out [15], almost all of the Na+-
counterions are exchanged by H+-ions by this procedure,
but we retain the molecular weights of NaPSS which has
of course the same contour length as HPSS. It is very
important that filtering of the Na(H)PSS solution in the
circuit is done by filters of 0.1 µm pore size [20]. Oth-
erwise aggregates will dominate the scattering at small
angles. The concentration of the latex spheres was taken
as given by Dow Chemicals. The concentrations of the fd-
and Na(H)PSS samples were measured by a spectropho-
tometer (Beckman, DU 64, Darmstadt, Germany) at the
absorption maximum of λ = 269 nm and 224 nm respec-
tively.

2.2 Light scattering apparatus

A commercial light scattering apparatus (ALV 5000, Lan-
gen/Germany) consisting of a computer controlled go-
niometer table with focusing and detector optics, a power
stabilized 3 W argon laser (Spectra Physics), a digital rate
meter, and a temperature control for the sample cell was
used.

3 Theoretical

Although there are no theoretical treatments of the struc-
tural and dynamic properties of the two component sys-
tems to be discussed here, it is necessary to be famil-
iar with the basic formulas for the “measured” static
structure factor and the short time dynamics. They are
a generalisation of the definitions for bidisperse sphere-
systems [21,22]. Therefore, only a brief summary is given
here.

3.1 Averaged scattered intensity

Monodisperse systems

The scattering of the particles in question may be treated
in the Rayleigh-Gans-Debye approximation: The macro-
molecules are divided into small segments which are con-
sidered as point scatterer. The amplitude of the scattered
electric field Es(q, t) can be written as

Es(q, t) =
∑
i

Fi(q)e
iqRi(t). (1)

Fi is the amplitude of the electric field of the ith scattering
center, and Ri(t) denotes the center of gravity vector of
the particle i at time t

Fi(q) = fiBi(q) (2)
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Table 1. Characterisic properties of NaPSS-particles used in the experiments.

Molecular weight Contour-length Lc Number of Conductivity- c∗c

[g/mol] [nm] monomers N charge Q [e−] [part./ml]

1 010 000 1226 4903 1149 5.43 × 1011

744 000 903 3612 847 1.36 × 1012

356 000 432 1728 405 1.24 × 1013

183 000 222 888 213 9.14 × 1013

where

Bi(q) =
1

fi

∫
ζi(r)eiqrdr

fi =

∫
Vi

ζi(r)dr. (3)

Here Bi(q) is named the normalized field-amplitude,
ζi(r) is the distribution of scattering material inside the
macroion i and Vi is the corresponding volume, fi is the
field amplitude at q = 0. The time averaged intensity
then is

Is(q) = 〈|Es(q, t)|
2〉t = 〈Es(q, t)E

∗
s (q, t)〉t. (4)

To calculate Es(q, t) we may separate the scattering in an
inter- and intramolecular part. Thus, we may write

Es(q, t) ∝
N∑
i=1

eiqRi(t)
n∑
α=1

eiqriα(t)

∝
N∑
i=1

eiqRi(t)Fi(q, t). (5)

Here n is the number of scattering particles, riα(t) is the
position vector of scattering element α and n is the num-
ber of segments of the macroparticle i.

IntroducingEs(q, t) in equation (4) the intensity finally
becomes

Is(q) ∝ N〈F
2
i (q, riα)〉+

〈
N∑
i6=j

eiq(Ri−Rj)Fi(q)Fj(q)

〉
.

(6)

The factor Fi(q) is known as form amplitude, the aver-
aged squared quantity is the form factor P (q). It has been
calculated for spherical or rodlike particles. For spherical
particles Fi = Fj and, as is well known, the intensity is

Is(q) ∝ N〈F
2
i 〉

1 +
1

N

N∑
i6=j

eiq(Ri−Rj)

 (7)

= NP (q)Ssph(q) (8)

where Ssph(q) is the static structure factor of the spheres
dissolved in water. For rodlike particles Fi 6= Fj , because

they depend on the orientation of the particles. Never-
theless, to keep the above description of equation (8) the
intensity is written

Is(q) ∝ NP (q)

{
1 +

1

NP (q)

×

〈
N∑
i6=j

eiq(Ri−Rj)Fi(q · u)Fj(q · u)

〉}
(9)

where u is a unit vector, pointing along the rod axis.
Equation (9) shows that the structure factor depends on
the form factor. Considering S(q, P (q)) as function of con-
centration, it has been found experimentally and theoret-
ically, that the wavenumber qm of the first maximum of
S(q, P (q)) scales as proportional to c1/3 below the over-
lap concentration c∗, and as c1/2 above it. The overlap
concentration of a rodlike particle of length l is defined
as c∗ = 1 particle/l3. A similar relation holds for flexible
particles.

3.2 Two component fluids

Extension of equation (5) on p sorts of particles yields for
the scattering intensity

Is(q) ∝ N

〈∣∣∣∣∣
N∑
α=1

Nα∑
i=1

Fα(q)eiqRα
i

∣∣∣∣∣
2〉

. (10)

Defining the partial structure factors as

Sαβ(q) =
1

N

Nα∑
i=1

Nβ∑
j=1

〈eiq(Rα
i −Rβ

j )〉 (11)

leads to the intensity

Is(q) ∝ N
p∑

α=1

p∑
β=1

Fα(q)Fβ(q)Sαβ(q) (12)

= Nf2 P (q)SM(q) (13)

where the quantities f2 and P (q) are given by the averages
over the particle type distribution

f2 =

p∑
α=1

xαf
2
α (14)

P (q) =
1

f2

p∑
α=1

xαF
2
α(q), (15)
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Fig. 1. Formfactor of spheres and rodlike particles together
with an example of averaged formfactor (xrel = xfd/xsph).

xα denotes the molar fraction of particles of sort α, and fα
is the field amplitude at q = 0. SM(q) is called measured
structure factor. It is defined by

SM(q) =
1

f2

1

P (q)

p∑
α=1

p∑
β=1

fαfβBα(q)Bβ(q)Sαβ(q). (16)

Specializing the measured structure factor to the sphere-
rod system it is useful to write

SM(q) = N
1

f2

1

P (q)
f2

sph

× Psph(q)
{
Ssph(q) + δ2(q)Sfd(q) + 2δ(q)Ssph,fd(q)

}
(17)

where δ(q) is defined as

δ(q) =
ffdBfd(q)

fsphBsph(q)
· (18)

The averaged form factor becomes

P (q) ∝ xsphf
2
sphPsph(q)

{
1 + δ2(q)xrel

}
;

xrel =
xfd

xsph
· (19)

It should be noted that the field amplitudes of non spher-
ical particles are angular dependent which has not explic-
itly been taken into account above.

Equivalent expressions can be written down for the
sphere-flexible polyion system. The form factors of spheres
(Ø = 67 nm) and fd-particles are compared with each
other in Figure 1.

For the calculation of the averaged form factor the
polarizability or the index of refraction of the two com-
ponents of the mixture have to be known. We could not
find the value for fd-particle solutions in the literature.

Therefore we have estimated it as follows. The scattering
intensity of a one component system m is given by

Is(q) =
16π4

λ4R2

{
n2
m − n

2
s

n2
m + 2n2

s

}2

V 2
mNmP (q)S(q)I0. (20)

I0 is the intensity of the incident beam. In a salt containing
solution or at sufficiently large scattering angles S(q) is
equal to one. Thus for a solution of spheres we may write

Is,sph(q) = c′sph(q)I0. (21)

By calculating csph(q) a value of I0 is obtained from the
measurement of the scattering intensity. For fd-particle
solutions we may write

Is,fd(q) = c
′′

fd(q)

{
n2

fd − nH2O

n2
fd + 2n2

H2O

}2

I0. (22)

By again measuring the scattering intensity the index
of refraction can be determined to yield approximately
nfd = 1.56.

4 Results and discussion

4.1 Sphere-rod system

For the first series of solutions latex spheres of Ø = 67 nm
were used at a concentration of 0.02 Vol% correspond-
ing to 1.27 × 1012 particles/ml. Samples of mixtures of
various concentrations up to about 10c∗fd were prepared.
The overlap concentration c∗fd = 1 particle/length3 corre-
sponds to 1.5 × 1012 particles/ml. Similar samples were
prepared with spheres of c = 0.05 Vol%.

In Figure 2 the static structure factors of some of the
samples with 0.02 Vol% spheres are depicted. The light
scattering at the scattering vector qmax of the maximum
of the structure factor originates mainly from the spheres.
This is estimated from the values of δ; especially for the
mixtures with the larger spheres not only the contribution
from the fd-term vanishes but also the prefactor of the
mixed term (which is not known) is smaller than 0.1. At
large enough values the measured structure factor is equal
to one. In cases where the oscillations of SM(q) had not
yet decayed, it had to be adjusted by eye.

To investigate a possible dependence of the diame-
ter Ø of the spherical particles, measurements with latex
spheres of Ø = 91 nm (0.02 Vol%) were also performed
(not shown).

A common feature of all three cases is a consid-
erable broadening of the structure factor with increas-
ing fd-concentration together with a decreasing of height
of the maximum. Comparing the entities for spheres of
Ø = 67 nm and Ø = 91 nm at equal molar fraction of
the fd-particles it turns out that for the larger spheres
the measured structure factor is more strongly affected
(Fig. 3). The first maximum of the structure factor is
shifted to larger wavenumbers as shown in Figures 4a-
4c. The first two plots (top) refer to a sphere concentra-
tion of 0.02 Vol%.There diameter is 67 nm; the lowest
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Fig. 2. Measured static structure factor of mixtures of 0.02 Vol% latex spheres (Ø = 67 nm, 1.27× 1012 part./ml) and rodlike
fd-particles (l = 883 nm).

plot shows results for spheres of Ø = 91 nm. It should be
noted that the values of the abscissa are the total con-
centrations (ctotal = csph + cfd). The structure factor for
q → 0 increases with fd-concentration.

It is seen that for mixtures containing concentrations
of fd-particles which do not yet overlap, cfd < c∗fd, the
wavenumber of the first maximum is shifted proportional

to c
1/3
total. Around and above c∗fd the exponent takes values

between 1/3 and 1/2. The best fit is obtained with an
exponent of 0.38 and 0.39 respectively. No dependence of
size and concentration of the latex spheres is observed.

Which is the mutual arrangement of the two compo-
nents? One could think of a macroscopic phase separation
of the two species (compare [23,24]), however there is no
indication for this. Data were taken at different heights of
the sample cell without observing any changes. Also, the
change of the exponents of qmax ∝ cα close to cfd = c∗fd
would not be understandable. For the same reason macro-
scopic clustering of spheres and rods can be excluded.
Moreover, the solutions are very transparent.

If there is no macrocopic phase separation the mean
distance between the spheres remains constant on a
macroscopic scale. One therefore might conclude that qmax
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Fig. 3. Maximum value of the measured static structure factor
relative to the one of the sample consisting of spheres only
versus relative concentration of fd-particles.

should be constant. But this is only true if the particles
are distributed uniformly. In reality the two sorts of par-
ticles are about equally charged, and we deal with a short
range ordering in which all particles take part. For illus-
tration let us think on a simplified two dimensional ex-
ample of a (distorted) hexagonal arrangement of charged
latex spheres. When fd-particles are added they will re-
place some of the latex spheres. The latter together with
other fd-particles will form additional hexagons, and since
the volume of the sample is constant the distance between
all particles will diminish uniformly. Different combina-
tions of the two sorts of particles will result on a hexagon
which implies that microscopically there is no longer a uni-
form arrangement of latex- (and fd-) particles. As just ex-
plained the distance between any nearest neighbours and
therefore that between nearest neighbour latex spheres,
which give rise to the structure factor, will decrease as
if the solution consists of spheres only of concentration
ctotal = clatex + cfd. Interactions between those spheres
that are not nearest neighbours of each other are screened
by the fd-particles between them. Therefore correlations
between their positions are expected to be weak or even
negligible.

For small concentrations (averaged sphere-rod distance
bigger than about the rod length) we may neglect the ani-
sometry of the fd-particles, and qmax will change propor-
tional to (ctotal)

1/3. By increasing the fd-concentration the

Fig. 4. Wavenumber of the maximum of measured structure
factor of mixtures of latex spheres and rodlike fd-particles
versus concentration.

interaction between the anisometric particles and also that
between spheres and fd-particles become anisotropic. This
obviously influences the positions of the spheres showing
up as a deviation of the exponent from 1/3 to a bigger
value; in parallel the decreasing and broadening of the
measured structure factor expresses the loss of correla-
tion between the spheres; in their neighbourhood more
and more anisometric particles accumulate. This intuitive
picture is in accord with measurements which were per-
formed by varying the concentration of the two species
in a way that the total concentration is kept constant. In
this case, if the concentration of spheres is lowered, the
position of the structure factor remains constant. (Only
when the particles consist predominately of fd-particles a
small shift of qmax is observed which is known from pure
fd samples.)

Of course the above suggested model is based on qual-
itative arguments. To get a more detailed understanding
of the structural properties of a sphere-rod-system all pa-
rameters of the solutions including the charges of the two
components have to be taken into account quantitatively.
Other arrangements of the particles might be possible.
Very recently e.g. different microscopic phases have been
observed in highly concentrated mixed systems of globular
and rodlike particles [12].

Turning towards the dynamics of the system it should
be repeated that for both parental spherical and rodlike
macromolecules the dynamical properties have been ex-
plored experimentally and theoretically [12–14,25] except
the long time behavior of the correlation function for salt-
free solutions of rodlike particles which is only known ex-
perimentally [14]. The cumulant expansion method was
applied to obtain an (effective) short time diffusion coef-
ficient. This will be compared by the inverse of the static
structure factor by means of a relation originally derived
for spherical particles. The first cumulant K1(q) for a one
component system is defined as

K1(q) =
d

dt
lnS(q, t)|t=0 (23)
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which for noninteracting spheres leads to [26]

K1(q) = D0q2. (24)

For anisometric particles, D0 has to be replaced by D0,eff .
In the case of electrostatic interaction the effective dif-
fusion coefficients are denoted both by Deff . The cou-
pling to the static structure factor of spheres is now
given by

K1(q) = q2H(q)

S(q)
(25)

where H(q) takes into account hydrodynamic interaction.
Combining the two expressions the static structure factor
becomes

S(q) =
H(q)

Deff(q)
· (26)

The right side can be regarded as a dynamically deter-
mined static structure factor. Good agreement has been
obtained between the two quantities not only for solutions
of spheres but also of rodlike particles. For two component
mixtures of spheres the first cumulant is written as [22,27]

K1(q) =
q2

P (q)SM(q)

×
2∑

α,β=1

(xαxβ)1/2fαfβBα(q)Bβ(q)Hαβ(q, t).

(27)

Neglecting the hydrodynamic interaction (Hαβ(q, t) =
D0
αδαβ) one obtains

K1(q) =
q2

P (q)SM(q)

2∑
α,β=1

xαf
2
αB

2
α(q)D0

α. (28)

In the case of mixtures of spherical and rodlike particles
we formally write for the measured static structure factor

SM(q) =
q2

P (q)K1(q)
xsphf

2
sph

× Psph(q)
{
D0

sph + xrelδ
2(q)D0,eff

fd

}
· (29)

Strictly speaking, it has been shown for sphere-sphere mix-
tures that at small wavenumbers hydrodynamic interac-
tion has to be taken into account. Again a corresponding
expression holds for sphere flexible polyion mixtures. The
diffusion coefficients for non interacting spheres and ani-
sometric particles are of the same order of magnitude. For
the same reason as above the contribution from the fd
particles to the measured structure factor at not too high
concentrations is small. This especially proves correct for
mixtures containing Na(H)PSS polyions.

To determine the “dynamically obtained structure fac-
tor” we have to divide (see Eq. (26)) the first cumu-
lant without interaction by the one with interaction,

equation (28). The former has been measured for xrel up
to 7. A constant value was obtained independent of q.

Figure 5 shows an example of the experimental results
for the dynamically obtained (“measured”) structure fac-
tor of mixtures with 0.05 Vol% latex spheres (Ø = 67 nm).
It may be compared with the measured static structure
factor. By and large there is good agreement between the
two quantities. Only at small wavenumbers deviations oc-
cur with increasing fd concentration. The structure fac-
tor increases to higher values up to about 20%. Qualita-
tively this effect is in agreement with contributions from
hydrodynamic interaction [26]. Detailed theoretical treat-
ments are available only for monodisperse and polydis-
perse spherical particles.

4.2 Sphere flexible-linear-polyion system

We now want to present our results on two-component
mixtures of aqueous solutions of monodisperse latex
spheres and Na(H)PSS, a flexible linear polyion. As al-
ready stated, samples with chains of four different molec-
ular weights were investigated. In Figure 6 an example of
the measured static structure factor (MW 744 kg/mol)
is shown for various Na(H)PSS concentrations. Since the
scattering power of the latter particles is more than an
order of magnitude weaker than that of fd particles, the
data refer entirely to the spheres. At the first glance, the
overall behaviour of the measured static structure factor
SM(q) seems similar as before: with increasing concen-
tration of the flexible polyions the maximum of SM(q)
moves to larger wavenumbers the latter thereby broaden-
ing and decreasing in height. The shift of qmax is shown
again in a double logarithmic presentation in Figures 7a-
7d. Straight lines are obtained. This is only the case if the
total concentration is used. Replacing it by the Na(H)PSS-
concentration results in a bending of the formerly straight
lines to higher values. For the flexible polyions of biggest
contour length qmax changes with total concentration pro-
portional to c0.40. Almost all data points refer to the
semidiluted regime. Therefore the result corresponds to
mixtures with rodlike particles. However, a kink is devel-
oping when the molecular weight gets smaller. Below a
certain critical concentration ccrit the exponent decreases
from 0.36 to 0.14 for MW185 (Tab. 2). The critical con-
centration ccrit depends on the particle concentration of
Na(H)PSS. For MW 744 a value of 2 × 1012 part./ml is
observed, for MW183 ccrit = 5×1012 part./ml. Asking for
the corresponding monomer concentration values between
7224 and 4400 are found. When the concentration of the
spheres is doubled, the critical Na(H)PSS concentration
seems doubled too).

Above ccrit only a small reduction from 0.40 to 0.32
takes place. This result can be qualitatively explained by
the decrease of the contour length of the flexible particles.
Concerning the highest MW-particles the measurements
range in a concentration regime in which spheres and elon-
gated chains are close to each other or overlap. Therefore
similarly as in pure Na(H)PSS the pair potential becomes
angular dependent, and the exponent deviates from 1/3.
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Fig. 5. Dynamically determined static structure factor of 0.05 Vol% latex spheres (Ø = 67 nm) and rodlike fd-particles (4).
The measured static structure factor is plotted too for comparison (•).

When at constant chain concentration the contour length
decreases the measurements refer more and more to the di-
luted regime where anisometry of particles gets less impor-
tant. Consequently the exponent will approach 1/3. This
is particularly true since the ionic strength is higher than
in pure Na(H)PSS systems due to the presence of highly
charged spheres. Consequently the Na(H)PSS particles are
more bent, and the overlap concentration increases.

The small exponent below ccrit is more difficult to
explain. We again have looked for different phases in
the sample, but the result was negative. For further
clarification, Figure 8 shows the relative height of the first
peak as function of Na(H)PSS monomer concentration. It
is seen that the values are rather similar with regard to
the MW (when plotted versus particle concentration, the
curves are somewhat more separated from each other).
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Table 2. Critical concentrations and the exponents of qmax ∝ (ctotal)
α.

Molec. Weight csphere ccrit Exponent

[g/mol] [part./ml] [monom./ml] [part./ml] c < ccrit c > ccrit

1 010 000 1.27 × 1012 0.40

744 000 1.27 × 1012 7.224× 1015 2.0× 1012 0.28 0.36

356 000 1.27 × 1012 6.048× 1015 3.5× 1012 0.17 0.32

183 000 1.27 × 1012 4.400× 1015 5.0× 1012 0.14 0.32

183 000 3.54 × 1012 9.946× 1015 11.2 × 1012 0.14 0.31

Fig. 6. Measured static structure factor (�) of mixtures of 0.02 Vol% latex spheres and NaPSS-particles (molecular weight
MW = 744 kg/mol) together with dynamically obtained structure factor; (xrel = 0−10.25).
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Fig. 7. Wavenumber of the first maximum of the mea-
sured static structure factor versus total particle concentration,
csph = 1.27 × 1012 part./ml, Ø = 67 nm.

Fig. 8. Relative height of first peak of measured static
structure factor of latex/NaPSS-mixtures versus numbers of
monomers (The maximum of structure factor of pure latex-
sample is denoted by S0(qmax).

In Figure 9 the relative halfwidths are plotted. The values
for MW183 range typically 10% below the others. At small
concentrations below ccrit a strong increase of ∆q1/2/qmax

is observed which becomes essentially constant at larger
cmono. It remains constant as a function of total concen-
tration which means that the correlation length scales as
qmax. No peculiarity exists at ccrit besides a weak maxi-
mum for MW183. This was observed in two independently

Fig. 9. Relative halfwidth of first peak of measured static
structure factor of latex/NaPSS-mixtures versus numbers of
monomers.

prepared series, but was not found in the concentration
dependence of the series with doubled concentration of
spheres.

There is one quantity that has not yet included in
the discussion so far, namely the charge of the parti-
cles. Since the four MW’s used in the experiments dif-
fer by a factor of 5.5, the corresponding charges will also
vary considerably. For pure Na(H)PSS aqueous solutions
a so-called conductivity charge can be derived from the
measured conductivity. For each MW they are listed in
Table 1. The corresponding charge of latex spheres ranges
at about 350e−. Therefore, using these values for the mix-
tures too, the charge of the flexible ions at the highest
MW are larger and at the lowest MW are smaller than
that of the spheres. It might be possible that short flexible
particles with low charge will indeed displace surround-
ing spheres slightly (see the broadening of the SM(q)),
but they are not yet built in “regularly” to yield a new
“ordered” first neighbour shell of a given sphere, because
the electrostatic interaction is too small. When the con-
centration of the added macroions increases more and
more, the distance between the spheres and the flexible
polyions becomes smaller and at a certain concentration
the interaction will be strong enough to rearrange the
spheres and chains.

It has been mentioned in the introduction that ad-
sorption of flexible macroparticles onto spheres or bridging
takes place in some cases. Adsorption is unlikely here since
the particles bear charges of the same sign. Also, above

ccrit qmax is proportional to c
1/3
total, which means that in this

regime there is no adsorption. Bridging between spheres
below ccrit can be excluded at least for the two smallest
MW’s, because the distance between neighbouring spheres
on an average is longer than the contour length. To un-
derline the argumentation we have plotted in Figure 10
the short time self diffusion coefficient of the spheres.
This quantity can be obtained by dynamic measurements
at wavenumbers above qmax, where SM(q) ≈ Ssph(q) =
1. Our intention was to check whether the diffusion
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Fig. 10. Short time diffusion coefficient of latex/Na(H)PSS-
mixtures of three MW’s as function of particle concentration.

coefficient below and above ccrit respectively show marked
differences which could be an indication of aggregation of
the flexible polyions onto the spheres. No such effect has
been observed.

Finally we turn to the short time dynamics. Measure-
ments of the time autocorrelation function have again
been performed in the same concentration regime that has
been covered by the static measurements. The number of
q-values at which data have been taken were somewhat
reduced. The first cumulant was determined and put into
equation (29), adjusted for the present system. In gen-
eral, it is not possible to calculate the “measured struc-
ture factor” since the averaged form factor and the dif-
fusion coefficient D0,eff

mixt are not known. However, because
of the very small scattering amplitude of Na(H)PSS, con-
tributions from the flexible polyions to it are negligible.
In Figure 6 an example (MW 744 kg/mol) of the dynam-
ically determined structure factor is compared with the
measured static structure factor. To avoid any uncertain-
ties in D0,eff

mixt the dynamically determined SM
d (q) adjusted

to SM(q) at qmax. In this way in most of the cases fair
agreement is obtained around the first peak and at wave-
numbers above. Small deviations occur in the way that
the structure in SM

d (q) above the peak position for larger
c is washed out faster with increasing Na(H)PSS concen-
tration than in SM(q). This phenomenon is known from
bidisperse mixtures of spheres [7].

At small q’s the situation is in principle similar as for
mixtures with rodlike particles. With increasing concen-
tration of Na(H)PSS the dynamically obtained structure
factor Sd(q) increase stronger than the measured struc-
ture factor. Comparing the results of the latex-fd-mixtures
with those of latex-Na(H)PSS mixtures with the latter
having the same contour length as fd similar deviations are
found. Comparing the deviations amongst the four MW
series, they scale rather with monomer concentration than
with particle number. Taking into account hydrodynamic
interaction might again improve the agreement between
static and dynamic results.

5 Summary

This work resumes on light scattering results on saltfree
aqueous solutions of two component mixtures of spheri-
cal and anisometric particles. In a first step rodlike parti-
cles have been added to latex spheres. In the second part
of the paper, the stiffness of the rods has been dropped.
Fd-virus and NaPSS-particles meet these conditions. In
aqueous solution all particles are highly charged. There-
fore configurations with nearest neighbour ordering exist
in which the two sorts of particles contribute; their po-
sitions are correlated with each other. On a microscopic
scale the two sorts of particles are inhomogeneously mixed.
The mean distance between any two particles is deter-
mined by the total number of particles. A sensitive mea-
sure of the new arrangements of the spheres is the mea-
sured static structure factor SM(q). With inceasing con-
centration of anisometric particles the maximum of SM(q)
scales like qmax ∝ cαtotal. The magnitude of α depends on
the shape of the anisometric particles. Only for globu-
lar macromolecules α is 1/3. The latter is observed for
Na(H)PSS chains of MW ≤ 800 kg/mol above a crit-
ical concentration. Below ccrit a smaller exponent than
1/3 is found for these MW’s. Tentatively this effect is as-
sociated with the small charge of these macromolecules,
which is not sufficient for a rearrangement of spheres. The
strong decrease of the measured static structure factor
with added particle number reflects the loss of correlation
of the spheres. The short time dynamics reflects essen-
tially the structural properties of the systems. At small
wavenumbers below the first peak discrepancy of the dy-
namically determined and the measured structure factor
occur. The deviations are of similar magnitude for latex-
fd and latex-Na(H)PSS. Hydrodynamic interaction, which
was not taken into account, might be one reason for the
differences.

More measurements are necessary to clarify the
concentration dependence of qmax below the critical con-
centration. One way to do this are light scattering ex-
periments with mixtures of latex spheres and Na(H)PSS
particles whose sulfonation is reduced. Such experiments
could no longer be performed because of retirement of one
of us (R.W.).

The authors are grateful to M. Maret for bringing reference [12]
to our attention. This work was financially supported by the
Deutsche Forschungsgemeinschaft (SFB 306).
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Krause, C. Martin, R. Weber, J. Chem. Phys. 95, 6284
(1991).

15. For references up to 1996 see: St. Batzill, R. Luxemburger,
R. Deike, R. Weber, Eur. Phys. J. B 1, 491 (1998).

16. K. Kassapidou, W. Jesse, M.E. Kuil, A. Lapp, S. Egelhaaf,

J.R.C. van der Maarel, Macromolecules 30, 2671 (1997).

17. J.J. Tanahatoe, M.E. Kuil, Macromolecules 30, 6102
(1997).
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